skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Koekemoer, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The majority of low-mass ( log 10 M * / M = 9 10 ) galaxies at high redshift (z > 1) appear elongated in projection. We use JWST-CEERS observations to explore the role of gravitational lensing in this puzzle. The typical galaxy–galaxy lensing shearγ ∼ 1% is too low to explain the predominance of elongated early galaxies with an ellipticitye ≈ 0.6. However, nonparametric quantile regression with Bayesian Additive Regression Trees (or BART) reveals hints of an excess of tangentially aligned source–lens pairs withγ > 10%. On larger scales, we also find evidence for weak-lensing shear. We rule out the null hypothesis of randomly oriented galaxies at ≳99% significance in multiple NIRCam chips, modules, and pointings. The number of such regions is small and attributable to chance, but coherent alignment patterns suggest otherwise. On the chip scale, the average complex ellipticity 〈e〉 ∼ 10% is nonnegligible and beyond the level of our point-spread function (PSF) uncertainties. The shear variance γ ¯ 2 1 0 3 is an order of magnitude above the conventional weak-lensing regime but is more sensitive to PSF systematics, intrinsic alignments, cosmic variance, and other biases. Taking it as an upper limit, the maximum implied “cosmic shear” is only a few percent and cannot explain the elongated shapes of early galaxies. The alignments themselves may arise from lensing by a protocluster or filament atz ∼ 0.75 where we find an overabundance of massive lens galaxies. We recommend a weak-lensing search for overdensities in “blank” deep fields with the James Webb Space Telescope and the Roman Space Telescope. 
    more » « less
  2. Abstract VV 191 is a nearby (z∼ 0.05), overlapping (occulting) galaxy pair, where a multiple-armed spiral galaxy is backlit by an elliptical galaxy. The overlap is used to derive and map dust attenuation in two James Webb Space Telescope NIRCam filters (F090W and F150W) and one visible-band Hubble Space Telescope Wide Field Camera 3 filter (F606W). We present maps of the attenuation in each filter, the ratio of total to selective attenuation with a near-infrared (NIR) color excess, R V I ˜ , and the NIR attenuation curve power-law index,α, approximated via Monte Carlo resampling methods. The maps trace the optically thin outer disk of foreground galaxy VV 191b at ∼100 pc physical resolution. We find the distributions of attenuation and R V I ˜ to be close to log-normal, and the distribution ofαto be close to Gaussian throughout the disk and in high signal-to-noise ratio areas of VV191b. We analyze three spatially resolved handpicked regions in the far outer disk that are well backlit by the background galaxy. 
    more » « less
  3. We use JWST Near-Infrared Spectrograph observations from the Cosmic Evolution Early Release survey, GLASS-JWST ERS (GLASS), and JWST Advanced Deep Extragalactic Survey to measure rest-frame optical emission-line ratios of 89 galaxies atz > 4. The stacked spectra of galaxies with and without a broad-line feature reveal a difference in the [Oiii]λ4364 and Hγratios. This motivated our investigation of the [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram. We define two active galactic nucleus (AGN)/star formation (SF) classification lines based on 21,048 Sloan Digital Sky Survey galaxies atz ∼ 0. After applying a redshift correction to the AGN/SF lines, we find 69.2% of broad-line active galactic nuclei (BLAGN) continue to land in the AGN region of the diagnostic, largely due to the [Neiii]/[Oii] ratio. However, 33.0% of non-BLAGN land is in the AGN region as well. The [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram does not robustly separate BLAGN from non-broad-line galaxies atz> 4. This could be due to star-forming galaxies having harder ionization, or these galaxies contain a narrow line AGN, which are not accounted for. We further inspected galaxies without broad emission lines in each region of [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram and found that they have slightly stronger Ciii]λ1908 fluxes and equivalent width when landing in the BLAGN region. However, the cause of this higher ionization is unclear and may be revealed by observing UV lines. 
    more » « less
  4. Abstract We present dynamical modeling of the broad-line region (BLR) of the highly variable active galactic nucleus (AGN) SDSS J141041.25+531849.0 (z= 0.359) using photometric and spectroscopic monitoring data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping project and the current fifth-generation SDSS Black Hole Mapper program, spanning from early 2013 to early 2023. We model the geometry and kinematics of the BLR in the Hβ, Hα, and Mgiiemission lines for three different time periods to measure the potential change of structure within the BLR across time and line species. We find a moderately face-on ( i full - state = 29 . 68 3.62 + 4.74 deg ) thick-disk ( θ opn , full state = 42 . 04 3.96 + 4.32 deg ) geometry for most BLRs, with a joint estimate for the mass of the supermassive black hole for each of three time periods, yielding log 10 ( M BH / M ) = 8.1 0 0.03 + 0.03 when using the full data set. The inferred individual virial factorf∼ 1.6 is moderately smaller than the average factor for a local sample of dynamically modeled AGNs. There is strong evidence for nonvirial motion, with over 70% of clouds on inflowing/outflowing orbits. We analyze the change in model parameters across emission lines, finding the radii of BLRs for the emission lines are consistent with the following relative sizesR ≲ RMgII ≲ R. Comparing results across time, we findRlow-state ≲ Rhigh-state, with the change in BLR size for Hβbeing more significant than for the other two lines. The data also reveal complex, time-evolving, and potentially transient dynamics of the BLR gas over a decade-long timescale, encouraging for future dynamical modeling of fine-scale BLR kinematics. 
    more » « less
  5. Abstract We present the most detailed spectrum of intracluster light (ICL) in an individual cluster to date, the relaxed system RX J2129.7+0005, atz∼ 0.234. Using 15 broadband, deep images observed with the Hubble Space Telescope and JWST in the optical and the infrared, plus deep integral field spectroscopy from MUSE, we computed a total of 3696 ICL maps spanning the spectral range ∼0.4−5μm with our algorithm CICLE, a method that is extremely well suited to analyzing large samples of data in a fully automated way. We used both parametric and nonparametric approaches to fit the spectral energy distribution of the ICL and infer its physical properties, yielding a stellar mass log 10 ( M * / M ) between 11.5 and 12.7 and an average age between 9.7 and 10.5 Gyr, from CIGALE and Prospector results. This implies that the ICL in RX J2129.7+0005 is, on average, older than that of disturbed clusters, suggesting that the contribution from different stellar populations to the ICL is at play depending on the cluster’s dynamical state. Coupled with X-ray observations of the hot gas distribution, we confirm the relaxed state of RX J2129.7+0005, showing clear signs of sloshing after a last major merger with a high-mass-ratio satellite that could have happened ∼6.6 Gyr ago in a relatively radial orbit. The presence of substructure in the ICL, such as shells, clouds with different densities and a certain degree of boxyness, and a clump, supports this scenario. 
    more » « less
  6. Abstract In this work, we test the frequent assumption that Lyα-emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform nonparametric star formation history (SFH) reconstruction using the Dense Basis Gaussian-process-based method of spectral energy distribution fitting. We find that a strong majority (67%) of our LAE SFHs align with the frequently assumed archetype of a first major star formation burst, with at most modest star formation rates (SFRs) in the past. However, the rest of our LAE SFHs have significant amounts of star formation in the past, with 28% exhibiting earlier bursts of star formation, with the ongoing burst having the highest SFR (dominant bursts) and the final 5% having experienced their highest SFR in the past (nondominant bursts). Combining the SFHs indicating first and dominant bursts, ∼95% of LAEs are experiencing their largest burst yet: a formative burst. We also find that the fraction of total stellar mass created in the last 200 Myr is ∼1.3 times higher in LAEs than in mass-matched Lyman break galaxy (LBG) samples, and that a majority of LBGs are experiencing dominant bursts, reaffirming that LAEs differ from other star-forming galaxies. Overall, our results suggest that multiple evolutionary paths can produce galaxies with strong observed Lyαemission. 
    more » « less
  7. JWST spectroscopy has discovered a population ofz ≳ 3.5 galaxies with broad Balmer emission lines and narrow forbidden lines that are consistent with hosting active galactic nuclei (AGN). Many of these systems, now known as “little red dots,” are compact and have unique colors that are very red in the optical/near-infrared and blue in the ultraviolet. The relative contribution of galaxy starlight and AGN to these systems remains uncertain, especially for the galaxies with unusual blue+red spectral energy distributions. In this work, we use Balmer decrements to measure the independent dust attenuation of the broad and narrow emission-line components of a sample of 29 broad-line AGN identified from three public JWST spectroscopy surveys: CEERS, JADES, and RUBIES. Stacking the narrow components from the spectra of 25 sources with broad Hαand no broad Hβresults in a median narrow Hα/Hβ= 2.4 7 0.05 + 0.05 (consistent withAv = 0) and broad Hα/Hβ>8.85 (Av > 3.63). The narrow and broad Balmer decrements imply little to no attenuation of the narrow emission lines, which are consistent with being powered by star formation and located on larger physical scales. Meanwhile, the lower limit in the broad Hα/Hβdecrement, with broad Hβundetected in the stacked spectrum of 25 broad HαAGN, implies significant dust attenuation of the broad-line emitting region that is presumably associated with the central AGN. Our results indicate that these systems, on average, are consistent with heavily dust-attenuated AGN powering the red parts of their SED, while their blue UV emission is powered by unattenuated star formation in the host galaxy. 
    more » « less
  8. Abstract The first James Webb Space Telescope (JWST) Near InfraRed Camera imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z= 0.35) uncovered a Type Ia supernova (SN Ia) atz= 1.78, called “SN H0pe.” Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up JWST observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated postunblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant,H0 =  71.8 + 9.2 − 8.1 km s−1Mpc−1. The range of admissibleH0values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, but this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnifications, breaking degeneracies and producing our best estimate,H0 =  75.7 5.5 + 8.1 km s−1Mpc−1. This is the first precise measurement ofH0from a multiply imaged SN Ia and only the second from any multiply imaged SN. 
    more » « less
  9. Abstract We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n= 398); from 2 5 4 + 6 % at 0.5 <z< 1.0 to 3 1 + 6 % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up toz= 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 <z< 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts. 
    more » « less
  10. We present a new analysis of the rest-frame ultraviolet (UV) and optical spectra of a sample of three z > 8 galaxies discovered behind the gravitational lensing cluster RX J2129.4+0009. We combine these observations with z > 7.5 galaxies from the literature, for which similar measurements are available. As already pointed out in other studies, the high [O iii]λ5007/[O ii]λ3727 ratios (O32) and steep UV continuum slopes (β) are consistent with the values observed for low-redshift Lyman continuum emitters, suggesting that such galaxies contribute to the ionizing budget of the intergalactic medium. We construct a logistic regression model to estimate the probability of a galaxy being a Lyman continuum emitter based on the measured MUV, β, and O32. Using this probability and the UV luminosity function, we construct an empirical model that estimates the contribution of high-redshift galaxies to reionization. The preferred scenario in our analysis shows that at z ∼ 8, the average escape fraction of the galaxy population [i.e. including both LyC emitters (LCEs) and non-emitters] varies with MUV, with intermediate UV luminosity (−19 < MUV < −16) galaxies having larger escape fraction. Galaxies with faint UV luminosity (−16 < MUV < −13.5) contribute most of the ionizing photons. The relative contribution of faint versus bright galaxies depends on redshift, with the intermediate UV galaxies becoming more important over time. UV bright galaxies, although more likely to be LCEs at a given log(O32) and β, contribute the least of the total ionizing photon budget. 
    more » « less